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ABSTRACT
We present an accurate and fast framework for generating mock catalogues including low-
mass haloes, based on an implementation of the COmoving Lagrangian Acceleration (COLA)
technique. Multiple realisations of mock catalogues are crucial for analyses of large-scale
structure, but conventional N-body simulations are too computationally expensive for the
production of thousands of realizations. We show that COLA simulations can produce accurate
mock catalogues with a moderate computation resource for low- to intermediate-mass galaxies
in 1012 M� haloes, both in real and redshift space. COLA simulations have accurate peculiar
velocities, without systematic errors in the velocity power spectra for k ≤ 0.15 h Mpc−1, and
with only 3-per cent error for k ≤ 0.2 h Mpc−1. We use COLA with 10 time steps and a Halo
Occupation Distribution to produce 600 mock galaxy catalogues of the WiggleZ Dark Energy
Survey. Our parallelized code for efficient generation of accurate halo catalogues is publicly
available at github.com/junkoda/cola_halo.
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1 IN T RO D U C T I O N

Generating multiple realisations of mock galaxy catalogues is es-
sential for analysing large-scale structure in the Universe. It is a
necessary tool for evaluating the statistical uncertainties in the clus-
tering measurements, and systematic errors in theoretical modelling
and data analysis. The importance of accurate mock catalogues is
increasing as data analyses become more complicated and sophis-
ticated, and the large-scale-structure measurements become more
precise.

One of the targets of cosmological surveys is the Baryon Acous-
tic Oscillation (BAO) feature imprinted in the galaxy clustering
(Cole et al. 2005; Eisenstein et al. 2005; Blake et al. 2011; Beutler
et al. 2012; Anderson et al. 2014). It is a ‘standard ruler’ that pro-
vides robust measurements of the expansion history of the Universe
through the cosmological distances as a function of redshift. The
data analysis procedure was recently refined by the ‘reconstruction’
technique (Eisenstein et al. 2007), which improves the precision by
sharpening the BAO peak by rewinding the large-scale displace-
ments in part. This technique was first applied to the Sloan Digital
Sky Survey Data Release 7 (Mehta et al. 2012; Padmanabhan et al.
2012), and has become a standard procedure (Anderson et al. 2012,
2014; Kazin et al. 2014).

Covariance matrices, e.g. Cij = 〈ξ (ri)ξ (rj)〉 − 〈ξ (ri)〉 〈ξ (rj)〉, for
the two-point correlation function ξ (r), need to be calculated for
any analyses of large-scale structure to evaluate the best-fitting cos-

�E-mail: jun.koda@brera.inaf.it

mological parameters and their confidence regions. The ensemble
averages for the covariance matrix can be computed directly from
many realisations of mock galaxies. The benefit of multiple realisa-
tions of mock galaxy catalogues to build the covariance matrix is not
limited to BAO, but the preference of using mocks over other meth-
ods is clear for BAO due to its large length-scale of 150 Mpc and
non-trivial numerical process used by the reconstruction technique.
Mock galaxy catalogues based on simulations can properly evalu-
ate the error caused by imperfect reconstruction due to non-linear
motions and realistic selection function. Alternative methods like
jack-knife sampling work for measurements on small scales, but we
often do not have enough quasi-independent subvolumes assumed
for jack-knife sampling on BAO scales. Lognormal realizations of
the galaxy density field (Coles & Jones 1991) can provide many
samples of large-scale fields, but non-linear dynamics is not accu-
rate; one of the sources of uncertainties we would like to evaluate
for the BAO measurement is the amount of non-linear motion that
is not completely captured by the rewinding in the reconstruction
algorithm.

Running many N-body simulations for multiple realisations is
ideal, but it requires a large amount of computation time on a mas-
sively parallel supercomputer. An insufficient number of mock cat-
alogues would give biased error evaluation; even with 600 mocks,
careful treatment is necessary to evaluate the inverse covariance
matrix (Hartlap, Simon & Schneider 2007; Percival et al. 2014).
Simulations will be harder as the survey volume becomes larger
(BigBOSS Schlegel et al. 2009), and the resolution required to
resolve galaxy-hosting haloes becomes higher, e.g. for emission-
line galaxies in the HETDEX (Hill et al. 2004), Euclid (Amendola
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Fast and accurate mock generation 2119

et al. 2013), or FastSound (Tonegawa et al. 2015) surveys, or for less-
luminous galaxies in deeper surveys, GAMA (Driver et al. 2011)
or VIPERS (Garilli et al. 2014). Manera et al. (2013) generated
600 mock galaxy catalogues, ‘PThalos’, for the Baryon Oscillation
Spectroscopic Survey (BOSS), using the second-order perturbation
theory and Friends-of-Friends (FoF) halo finder (Davis et al. 1985).
Theoretical ideas of fast simulations using analytical theories ex-
isted a decade ago (Monaco, Theuns & Taffoni 2002; Scoccimarro
& Sheth 2002), or even earlier (adhesion approximation, Gurbatov,
Saichev & Shandarin 1989), but such research attracted attention
after the practical application to BOSS (de la Torre & Peacock 2013;
Monaco et al. 2013; Angulo et al. 2014; Kitaura, Yepes & Prada
2014; White, Tinker & McBride 2014; Avila et al. 2015; Chuang
et al. 2015a). See Chuang et al. (2015b) for a comparison of these
methods. Some of these recent methods randomly generate haloes,
instead of resolving haloes, using a probability that depends on the
local dark matter density.

We generate 600 mock galaxy catalogues for the WiggleZ Dark
Energy Survey (Drinkwater et al. 2010) for the improved BAO mea-
surement using the reconstruction technique (Kazin et al. 2014) and
for other analyses (Burrage, Parkinson & Seery 2015; Beutler et al.
2016; Marı́n et al. 2016). The WiggleZ samples are emission-line
galaxies in dark matter haloes of masses approximately 1012 M�,
which is about an order of magnitude smaller than the haloes hosting
the BOSS constant mass (CMASS) galaxies. We use the COmoving
Lagrangian Acceleration (COLA; Tassev, Zaldarriaga & Eisenstein
2013) method to run many simulation realizations, after finding
that the PTHalo method by Manera et al. (2013) was not able to
resolve 1012 M� haloes (see Section 3.1). In this paper, we present
the accuracy of COLA mocks on large scales relevant to cosmo-
logical analyses, which was not tested with the small simulation
box by Tassev et al. (2013), and show that COLA is accurate not
only for massive CMASS-like galaxies (Chuang et al. 2015b) but
for lower-mass galaxies. COLA is becoming a common tool when
a large number of simulations is required (Howlett, Manera & Per-
cival 2015a; Howlett et al. 2015b; Leclercq 2015; Leclercq, Jasche
& Wandelt 2015).

This paper is organized as follows. We first review the COLA
algorithm, and describe our COLA simulations for the WiggleZ
survey in Section 2, and compare our simulations with conventional
N-body simulations in Section 3. We describe our mock galaxy
catalogue based on COLA in Section 4, and compare the mock
galaxies with those based on conventional simulations in Section 5.
Throughout the paper, we use a flat �cold dark matter cosmology
with �m = 0.273, �� = 0.727, �b = 0.0456, h = 0.705, σ 8 =
0.812, and ns = 0.961, which is the Wilkinson Microwave Anisotropy
Probe 5 cosmology (Komatsu et al. 2009) used for the Gigaparsec
WiggleZ simulation Poole et al. (2015).

2 C O L A SI M U L AT I O N

We use the COLA method invented by Tassev et al. (2013, TZE
hereafter) to run many realisations of cosmological simulations
with a reasonable amount of computation time. COLA enables a
reduction in the number of time steps by combining second-order
Lagrangian Perturbation Theory (2LPT) and N-body simulation.

2.1 Introduction to the COLA algorithm

A typical time-evolution method for N-body simulation is the
leapfrog integration:

xi+1 = xi + vi+1/2�t (1)

vi+1/2 = vi−1/2 + F(xi)�t, (2)

where xi (i = 0, 1, 2, . . . ) is the position of a particle at time
ti ≡ i�t, vi+1/2 is the velocity at ti+1/2 ≡ (i + 1/2) �t, and F (x)
is the acceleration at x, for some time step �t. [The equations
are solely for illustrating the difference between the conventional
leapfrog integration and COLA; terms for the expanding Universe
are dropped. See, e.g. Quinn et al. (1997) for the leapfrog time
stepping for cosmological simulations.] The leapfrog integration is
accurate up to second order in �t, but the truncation error from
higher orders in �t makes the time evolution inaccurate for large
�t. In addition, the time step is usually proportional to the Hubble
time H−1(t) to integrate accurately in cosmological simulations,
which is smaller at higher redshifts. Since we can approximate the
motion well by 2LPT at high redshifts, we can use larger time
steps at high redshifts with COLA than the conventional leapfrog
integration.

COLA has two techniques that improve the accuracy of time
integration for large time steps. The first technique is using the
discrete time evolution only for the non-linear terms beyond 2LPT,
i.e. the residual particle position, velocity, and acceleration from
their 2LPT contributions:

xres ≡ x − x2LPT(t), (3)

vres ≡ v − ẋ2LPT(t), (4)

Fres ≡ F(x) − ẍ2LPT(t), (5)

where the dots are time derivatives, and,

x2LPT(t) = q + D1(t)� (1)(q) + D2(t)� (2)(q), (6)

is the growing-mode solution of 2LPT, mapping the initial co-
moving position q to a later position at time t. The time evolu-
tion is given by the linear growth factor D1(t), and the second-
order growth factor D2(t), which is approximately1 D2(t) =
− 3

7 D1(t)2�(a(t))−1/143, where �(a) = �m/(�m + ��a3) (see
Bouchet et al. 1995; Bernardeau et al. 2002, and references therein
for 2LPT). The first- and second-order motions are integrated an-
alytically with 2LPT, which does not have the truncation error for
discrete �t.

The second technique is an ansatz that the residual velocity decays
as,

vres(t) = vres
i+1/2

(
a(t)

a(ti+1/2)

)nLPT

(7)

for ti ≤ t ≤ ti + 1 during a drift step xi �→ xi+1, and,

vres(t) = Ai + Bia(t)nLPT (8)

for ti − 1/2 ≤ t ≤ ti + 1/2 during a kick step, vres
i−1/2 �→ vres

i+1/2, where
Ai and Bi are constants, a is the scale factor, and nLPT is a free pa-
rameter tuned to reproduce conventional N-body simulations most
accurately. We use the value nLPT = −2.5 found by TZE, which
gives the best cross-correlation coefficient between the true density
field and the one produced by COLA. These functions replace the
linear functions of �t in equations (1 and 2), and suppress the higher
order terms. (Note that the growing mode is captured by 2LPT, and

1 The public 2LPTIC code (footnote 3), originally designed to generate initial
conditions at high redshifts, does not contain the factor �−1/143, which is
negligible at high redshift. We correctly include this factor. The effect,
however, is negligible, only a sub-per cent contribution to the second order
at all redshifts.
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the residual term is a decaying mode – at least in the linear pertur-
bation theory.) The two equations (7 and 8) are empirical, and not
exactly consistent with each other; equation (7) is assuming that Ai

is negligible compared to the second term with Bi in equation (8). In
fact, TZE suggest another ansatz, vres(t) = vres

i+1/2, as a replacement
for equation (7) for simulations starting at high redshift z ∼ 49
with low-mass resolution, which is the other limit that Bia(t)nLPT is
negligible compared to Ai. The optimum ansatz, including the value
of nLPT, depends on the redshift and resolution. ‘Experimentation
is always advised with COLA’ (TZE).

2.2 Basic equations

We briefly review the equations of motion of dark matter particles in
the expanding Universe, and then present the COLA time evolution
equations (see also the original description by TZE). Let x be the
comoving coordinate of an N-body particle, and v = a2 ẋ be its
canonical velocity. The canonical velocity, v = m−1∂L/∂ẋ, follows
from the Lagrangian,

L = 1

2
m(a ẋ)2 − mφ(x, t), (9)

where m is the particle mass, a ẋ is the physical peculiar velocity,
and φ is the peculiar gravitational potential that satisfies the Poisson
equation in the physical coordinate ∇phys = ∇/a:(

1

a
∇

)2

φ(x, t) = 4πG [ρ(x, t) − ρ̄(t)] , (10)

for the matter density ρ and mean matter density ρ̄. This can be
written as

∇2φ(x, t) = 3

2
H 2

0 �ma−1(t)δ(x, t), (11)

using the density contrast δ ≡ ρ/ρ̄ − 1, the present critical density
ρcrit,0 ≡ 3H 2

0 /(8πG), Hubble constant H0, and the present mat-
ter density �m ≡ ρ̄/ρcrit,0. The Euler–Lagrange equation gives the
equations of motion,

ẋ = v/a(t)2, (12)

v̇ = m−1∂L/∂x = −∇φ(x, t) ≡ F(x, t). (13)

We discretize the time into nstep = 10 steps, uniformly in a between
scale factor 0 and 1,

a(ti) = ai ≡ i/nstep, (14)

a(ti+1/2) = ai+1/2 ≡ (i + 1/2)/nstep (15)

and set the initial condition,

xres(t1) = 0, vres(t1/2) = 0, (16)

which means that the position and the velocity are exactly equal
to those of 2LPT. This is slightly different from TZE; they set the
initial condition at a = 0.1 for both the position and the velocity,
and divide the scale factor by 10 between 0.1 and 1. (Our time
stepping is ‘nine steps’ in their language.) Even though setting the
initial velocity at t1/2 is natural for leapfrog integration, we find that
this causes 2–3 per cent excess in the matter power spectrum at
k ∼ 0.2 h Mpc−1; the original TZE initial condition may be more
accurate. We present the results using the original initial condition
in Appendix A.

The ansatz for the drift step (equation 7) and one of the equations
of motion (equation 12) give,

xres(t) = xres
i + vres

i+1/2

∫ t

ti

(
a(t ′)
ai+1/2

)nLPT dt ′

a(t ′)2
, (17)

for ti ≤ t ≤ ti + 1. We compute the integral numerically, which is
common for all particles. The time evolution during the kick step
(equation 8) is

vres(t) = vres
i−1/2 + a(t)nLPT − a

nLPT
i−1/2

nLPT a(ti)nLPT−1 ȧ(ti)
Fres(xi). (18)

for ti − 1/2 ≤ t ≤ ti + 1/2; the constants Ai and Bi in equation (8) are
set by matching the velocity at t = ti − 1/2,

vres(ti−1/2) = vres
i−1/2, (19)

and the acceleration at t = ti,

v̇res(ti) = BinLPT a(ti)
nLPT−1 ȧ(ti) = Fres(xi). (20)

We use equations (17 and 18) to update the N-body particle positions
and velocities xres

i �→ xres
i+1, vres

i−1/2 �→ vres
i+1/2, and also to interpolate

the quantities between time steps for snapshots at redshifts of our
interest.

2.3 The WiggleZ COLA (WiZ-COLA) simulation

The WiggleZ-COLA (WiZ-COLA) simulation is a set of COLA
simulations designed for the WiggleZ Dark Energy Survey
(Drinkwater et al. 2010) to quantify the systematic and statisti-
cal errors in data analyses. We run 3600 COLA simulations with
different initial random modes to generate 600 independent realisa-
tions of mock galaxies for six survey regions in the sky (we use six
independent realisations for the six regions). The WiggleZ survey
is a redshift survey which covers about 1000 deg2 up to redshift 1.
The survey volume consists of six regions in the sky, and analysed
in three redshift bins �zNear (0.2 < z < 0.6), �zMid (0.4 < z <

0.8), and �zFar (0.6 < z < 1.0). We use a periodic simulation box
of 600 h−1 Mpc on a side to cover any one of these redshift bins.
The mass of dark matter haloes hosting the emission-line galaxies
in the WiggleZ sample, inferred from the galaxy bias (Marı́n et al.
2013), is about 1012 h−1 M�. We use 12963 particles, which gives
the particle mass 7.5 × 109 h−1 M�, to have more than 100 parti-
cles for 1012 h−1 M� haloes. This mass resolution is equal to that
of the Gigaparsec WiggleZ simulation (GiggleZ; Poole et al. 2015),
which has 21603 particles in a 1 h−1 Gpc box on a side. We use
(3 × 1296)3 meshes for Particle Mesh (PM) gravitational force
solver to resolve haloes as TZE suggested.

We parallelize the publicly available serial COLA code2 by TZE
to run simulations that satisfy the volume and mass resolution re-
quired for the WiggleZ survey. We combine our parallelized COLA
code with a 2LPT code, 2LPTIC,3 based on N-GenIC,4 and an FoF
halo finder at N-body shop5 for efficient on-the-fly generation of
halo catalogues. We use a parallel Fast Fourier Transform library,
FFTW3 (Frigo & Johnson 2005) for 2LPT and PM. We follow the
slab decomposition of FFTW, which slices the volume along one
axis. We divide the simulation cube into 216 equal-volume slices,
and we move N-body particles between volumes after each time

2 https://bitbucket.org/tassev/colacode/
3 http://cosmo.nyu.edu/roman/2LPT/
4 http://www.gadgetcode.org/
5 http://www-hpcc.astro.washington.edu/tools/fof.html
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Fast and accurate mock generation 2121

Table 1. Computation wallclock time of each procedure in one COLA
simulation using 216 cores.

Procedure Time Fraction
(s) %

2LPT 18 2
FFT in COLA 583 66
Other processes in COLA 114 13
Data analysis (FOF) 167 19
Total 882 100

step using the Message Passing Interface. We do not write all the
dark matter particles to the hard drive, we only write haloes with
more than 32 particles and the matter density field on a grid at red-
shifts 0.73, 0.6, 0.44, and 0. The first three redshifts are the effective
redshifts of �zFar, �zMid and �zNear, respectively.

We use 216 cores and 4 × 216 Gbytes of random access mem-
ory in the Green II supercomputer at Centre for Astrophysics and
Supercomputing at Swinburne University. This number of cores is
necessary to allocate the large mesh. In Table 1, we list the compo-
sition of the computation time for one realization; one realization
takes about 15 min, and the majority of them (66 per cent) are used
for the FFTW for gravity solving. Only 2 per cent of the time is used
for 2LPT. Our COLA simulations are about a factor of 50 slower
than 2LPT, but still more than 100 times faster than typical N-body
simulations, which we describe in the following section.

3 AC C U R AC Y O F C O L A S I M U L AT I O N

To test the accuracy of our COLA simulations, we compare them
with simulations performed with the same number of particles and
the same initial random modes using the publicly available Tree-
PM N-body code GADGET-2 (Springel 2005). For GADGET, we use
25923 PM grids and a softening length equal to 5 per cent of the
mean particle separation. We use the default values of accuracy
parameters; η = 0.025 for the time step, and α = 0.005 for the force
accuracy. We setup the initial condition at z = 49 using the same
2LPT displacement fields. We make 14 realizations, and each of
the N-body runs takes about 9000 CPU hours using 384 computing
cores. The computation time for one realization is about 160 times
larger than that for our COLA simulation.

3.1 Haloes in 2LPT, COLA and GADGET simulations

In Fig. 1, we show slices of 2LPT, COLA, and GADGET simulations
at redshift 0.6. The red points are simulation particles in ‘mas-
sive haloes’ above 1013 h−1 M�, and blue points are particles in
‘low-mass haloes’ in the range 1012 h−1 M� < M < 1013 h−1 M�.
We identify the haloes with the FoF algorithm with linking length
0.2 times the mean particle separation ( = 0.2) for GADGET and
COLA, and  = 0.37 for 2LPT, following the prescription of
PTHaloes by Manera et al. (2013). The halo masses are based
on those of the GADGET simulation. The haloes in the COLA and
2LPT simulations are sorted by mass in descending order, and the
haloes are classified as massive or low mass by the ranking. The
massive PThaloes are found in approximately correct locations, but
low-mass PThaloes are completely mislocated; haloes in filaments
are not resolved, and the noise around massive haloes is incorrectly
identified as low-mass haloes. The COLA simulation, on the other
hand, is almost indistinguishable to the GADGET simulation; only a
small number of haloes crosses the mass boundary of M = 1013h−1

due to a scatter in mass.
We can also see the problem of the PTHaloes in the halo bias.

In Fig. 2, we plot the linear halo bias for haloes grouped by their
masses. Each group has a number density 2.5 × 10−4(h−1 Mpc)−3,
and the corresponding mass range is based on the GADGET simulation.
The linear bias is computed by matching the amplitude of the halo
power spectrum with the matter power spectrum of MPTBREEZE

(Crocce, Scoccimarro & Bernardeau 2012) for k ≤ 0.1 h−1 Mpc (see
more details in Section 3.3 for the power spectrum computation).
The bias of PTHaloes is always above 2, because all the haloes are
clustered around massive haloes. The biases of COLA haloes have
correct dependence on mass, but are 5 per cent smaller than those of
GADGET, which is probably due to the scatter in the halo mass. Since
there are more low-bias haloes than high-bias haloes, the scatter
introduces a larger fraction of low-bias haloes into the group.

3.2 Halo mass

In Fig. 3, we plot the halo masses of COLA and GADGET. For
each halo in the COLA simulation, HCOLA, we find the GADGET

halo, HGADGET, that contains the largest number of halo particles in
HCOLA, f: HCOLA �→ HGADGET, then we find the same mapping in
the opposite direction for each GADGET halo, g: HGADGET �→ HCOLA.
In the figure, we plot the masses for a subset of halo pairs that the

Figure 1. Simulation particles in 2LPT, COLA, and GADGET simulations, from left to right, respectively, in subvolumes of 100 × 100 × 2 (h−1 Mpc)3.
The red particles are particles in massive haloes, M ≥ 1013 h−1 M�, and blue particles are in low-mass haloes, 1012 h−1 M� ≤ M < 1013 h−1 M�. 2LPT
simulation can only resolve massive haloes, while COLA can resolve both massive and low-mass haloes.
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Figure 2. Linear biases of haloes grouped by their masses; each bin corre-
sponds to a number density of 2.5 × 10−4(h−1 Mpc)−3. COLA haloes have
correct bias with about 5 per cent accuracy, while PThalos have reasonable
bias only for the most massive bin. (The errors are twice the standard errors
in the mean of 14 realizations.)

Figure 3. The relation of halo masses in the COLA simulation MCOLA and
those in the GADGET simulation MGADGET. The straight red lines in both
panels are the linear fit, MCOLA = 0.938 MGADGET. The solid and dashed
black lines in the bottom panel are the mean and the standard deviation
of the ratio MCOLA/MGADGET, respectively. The ratios are almost mass
independent, and the scatters are 0.25–0.30.

both mappings exist and point to each other: {(HCOLA, HGADGET):
f(HCOLA) = HGADGET and g(HGADGET) = HCOLA}.

The linear fitting gives,

MCOLA = 0.938MGADGET. (21)

Figure 4. (Upper panel:) matter power spectra of a COLA simulation
(points) and a GADGET simulation (lines) at z = 0, 0.44, 0.6 and 0.73, which
have the same initial condition. (Lower panel:) ratios of COLA power spec-
tra to those of GADGET.

The ratio MCOLA/MGADGET is almost independent of mass, except
below 1012 h−1 M� where the artificial increase in the ratio is caused
by the minimum halo mass of 32 particles per halo. The scatters in
the ratios are about 0.24 above 1013 h−1 M�, and increase to about
0.3 near 1012 h−1 M�.

3.3 Matter power spectrum

We compare the matter power spectra of COLA with those of GADGET

in Fig. 4 for the 14 realizations with same initial conditions. COLA
is accurate within 1.4 per cent for k ≤ 0.1 h Mpc−1 and 2.5 per cent
for k ≤ 0.2 h Mpc−1, respectively. The error bars are twice the
standard error in the mean,

�P ≡ 2σ (P )/
√

Nr, (22)

where σ (P ) = ∑Nr
i=1(Pi − P̄ )2/(Nr − 1) is the standard deviation,

P̄ = ∑Nr
i=1 Pi/Nr is the mean, and Nr = 14 is the number of the

realisations. The error bars for the ratio in the bottom panel are too
small to see; cosmic variance does not directly affect the ratio of
two simulations using the same initial modes. We find an excess in
the power spectrum ratio, PCOLA/PGADGET > 1, which was not seen
in the original paper (TZE); this is caused by the slight difference
in the initial condition (equation 16, see also Appendix A). The
amount of error seems to fall into two groups; a group of redshifts 0
and 0.44, and the other group of 0.60 and 0.73. This could be due to
our interpolation between time steps (equation 17). Redshifts 0 and
0.44 correspond to scale factor 1 and 0.694 which are close to the
drift steps (equation 14), while the latter group with slightly larger
errors is offset from the scale factor steps by about 0.025. There is
probably room for a small improvement in the interpolation formula
by adding a term that uses the acceleration.

In Fig. 5, we plot the mean matter power spectrum of 3600
realizations and compare with an analytical power spectrum from
MPTBREEZE (Crocce et al. 2012). The long-wavelength modes, k ≤
0.1 h Mpc−1 are accurate within the statistical uncertainty; the χ2

for the first nine data points, k ≤ 0.1 h Mpc−1, is 7.1. We use a
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Fast and accurate mock generation 2123

Figure 5. (Upper panel:) mean matter power spectrum of 3600 COLA
simulations (WiZ-COLA, black crosses) compared to a non-linear analytical
power spectrum by MPTBREEZE (cyan line) at z = 0.6. Cyan circles are
the analytical power spectrum averaged on discrete grids in Fourier space.
(Lower panel:) the ratio of WiZ-COLA power spectrum to the analytical
power spectrum, both averaged on the same discrete grid in Fourier space.
COLA simulations give very accurate overall amplitude, in agreement with
the analytical power spectrum within statistical fluctuation. (The error bars
are twice the standard errors in the mean.)

publicly available code6 (Taruya et al. 2012) for the reference ‘no-
wiggle’ power spectrum (Eisenstein & Hu 1998). The good match
between COLA and MPTBREEZE near k = 0.1 h Mpc−1 is partially
due to a coincidence, as we see errors larger than 1 per cent in Fig. 4;
the accuracy of MPTBREEZE is about 2 per cent on BAO scales, k �
0.1 h Mpc−1. Here, we highlight the accuracy in the linear growth
factor in the matter power spectrum, which is a benefit of using
2LPT in COLA; 10-time step PM simulations, with conventional
leapfrog integration alone, have 1–2 per cent error in the overall
power spectrum amplitude (TZE).

The detail of calculating the power spectrum is as follows. We
assign matter densities on 3243 grids using the Cloud in Cell as-
signment, using all dark matter particles on the fly, and compute the
density contrast in Fourier space, δ(k), using a Fast Fourier Trans-
form. The FFTW library provides discrete δ(k) for kz ≥ 0 – modes
in the other half of the Fourier space do not contain independent
information due to the reality condition δ(−k) = δ(k)∗. To avoid
double counting of modes on the kz = 0 plane, we use the modes
{kz > 0} ∪ {kz = 0 and ky > 0} ∪ {kz = 0 and ky = 0 and kx

> 0}. We compute the averages P (k) = V −1〈δ(k)δ∗(k)〉 and plot
against the average wavenumbers 〈k〉 in bins of a fixed width �kbin

= 0.01 h Mpc−1, where V is the volume of the simulation box.
The average 〈P〉 is not an unbiased estimate of P(〈k〉) in general;
P(〈k〉) = 〈P(k)〉 is guaranteed only if P(k) is a linear function of k
within the bin. We, therefore, average the analytical power spectra
on the same discrete three-dimensional grid for accurate compari-
son, which are plotted by cyan circles in Fig. 5. This discrete aver-
aging makes statistically significant differences, especially between

6 http://www2.yukawa.kyoto-u.ac.jp/ãtsushi.taruya/cpt_pack.html

k = 0.01 and 0.02 h Mpc−1, where the power spectrum deviates sig-
nificantly from a linear function, reaching the maximum and turning
over. We correct for the smoothing and the aliasing effect using the
procedure by Jing (2005).

4 MO C K G A L A X Y C ATA L O G U E S

We populate the haloes with mock galaxies using the Halo Occu-
pation Distribution (HOD) prescription.

4.1 HOD for WiggleZ galaxies

We use a lognormal HOD (Zehavi et al. 2005; Cai, Bernstein &
Sheth 2011) for the emission-line galaxies in the WiggleZ sample.
We assume that the probability that a dark matter halo of mass M
hosts a WiggleZ galaxy is,

P (M) = exp

[
− (log10 M − log10 M0)2

2σ 2
log M

]
, (23)

where log10 M0 and σ log M are parameters fitted against data. We
populate at most one galaxy per halo, without any satellite galaxies,
and set the position and velocity of the galaxy equal to the averages
of the host halo particles (i.e. the centre-of-mass position and ve-
locity). We do not use the error function HOD (Zheng et al. 2005),
because we do not expect to find emission-line galaxies, which are
young star-forming galaxies, in groups or clusters hosted by massive
haloes.

We find the two HOD parameters by matching the projected
correlation function,

wp(rp) =
∫ πmax

−πmax

ξ (rp, π )dπ, (24)

with πmax = 60 h−1 Mpc. We perform the matching by populating
a series of mock catalogues using a trial set of HOD parameters,
computing the mock mean, and comparing the mock mean with
the data by minimizing a χ2 statistic using a covariance matrix
obtained from jack-knife re-sampling. Since log M0 and σ log M are
degenerate, we fix σ log M = 0.1. We find log10 M0 = 12.17 for �zNear

and �zFar, and 12.28 for �zMid for FoF halo mass M without any
corrections (Table 2, all masses are in units of h−1 M�). COLA
halo mass is about 7 per cent smaller than true N-body simulation
mass, but any constant calibration factor for the mass only rescales
the parameters without any change in the HOD mock.

We subsample the HOD galaxies by a realization-independent
factor to match the smooth number density without clustering n̄(x)
using the survey selection function (Blake et al. 2010). At low
redshift, there are rare cases that the number of HOD galaxies is not
sufficient. In such cases, we increase the width of the HOD σ log M

for M < M0 to match the number density, keeping the HOD the
same for M > M0.

4.2 HOD for BOSS CMASS galaxies

We also generate mock catalogues for the BOSS CMASS galaxies
in the BOSS-WiggleZ overlap volume using the same simulation
for the multitracer analyses (Beutler et al. 2016; Marı́n et al. 2016).
We refer the reader to these papers for the detail of the overlap
regions.
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Table 2. Best-fitting HOD parameters. Masses are in units of h−1 M�.

WiggleZ BOSS
log10 M0 log10 M0 log10 M0 σ log M log10 Mmin σ log M M0 β

(�zNear) (�zMid) (�zFar)

COLA 12.17 12.28 12.17 0.1 12.92 0.31 14.07 1.60
GADGET 12.28 0.1 12.92 0.37 14.00 1.45

We use the error function for the central galaxies, and a power
law for the satellite galaxies. We populate at most one central galaxy
per halo with a probability,

P (M) = 1

2

[
1 + erf

(
log10 M200,m − log10 Mmin

σlog M

)]
, (25)

where M200, m is a halo mass defined by the mass within a sphere of
radius r200, m, whose mean overdensity is 200 times the mean matter
density. We denote the similar quantities for 200 times the critical
density with M200, c and r200, c. If the halo has a central galaxy, we
draw a number of satellite galaxies from a Poisson distribution with
mean,

〈Msat〉 = (M200,m/M0)β . (26)

A satellite HOD with an additional parameter, [(M − M1)/M0]α

(Zheng et al. 2005), is also used frequently, but M1 is usually not
sensitive to the clustering data, and does not significantly improve
the fit (Blake, Collister & Lahav 2008).

We add a random offset and a random virial velocity to the
satellite galaxy assuming a spherical Navarro, Frenk & White (1997)
profile,

ρ(r) = ρ0

(r/rs)(1 + r/rs)2
. (27)

We can uniquely determine the two-parameter profile by specifying
the mass M200, c and a concentration parameter c200, c = r200, c/rs.
We draw a random concentration parameter from a known relation
in the literature, but there are several trivial steps to convert the halo
mass to an appropriate one.

(i) We first set the FoF halo mass MFOF = 1.066 MCOLA, which
is based on our calibration between COLA and GADGET simulations
(Fig. 3);

(ii) compute the typical concentration factor c̄ for mass MFOF

using Prada et al. (2012), but the relation is given as a function of
M200, c;

(iii) convert the FoF mass halo to M200, c using Lukić et al. (2009),
which depends on FoF mass and the concentration parameter. Their
formula also corrects for the resolution effect for a small number of
halo particles: N200, c ≡ M200, c/m, where m is the particle mass;

(iv) start from an initial guess of M
(0)
200,c = MFoF, and solve steps

(ii) and (iii) iteratively for mean concentration c̄,

c̄
(i+1)
200,c = c̄200,c(M (i)

200,c), (28)

M
(i+1)
200,c = M200,c(MFoF, N

(i)
200,c, c̄

(i+1)
200,c ), (29)

which converge quickly within several iterations;
(v) draw a random concentration parameter, log10c200, c from a

Gaussian distribution of mean log10 c̄200,c and standard deviation
σ log c = 0.078 (Manera et al. 2013);

(vi) recompute the mass M200, c using the generated c200, c. This
determines the halo profile completely, and we can compute M200, m

from the profile;

Figure 6. We tune the HOD parameters to match the projected correla-
tion functions wp. The mock measurement agree with the data within the
uncertainties. (The error bars for the data are 1σ .)

(vii) draw the number of central and satellite galaxies for given
HOD parameter using M200, m;

(viii) draw satellite positions from the static, spherical symmet-
ric NFW profile from the phase-space distribution function. The
static distribution function is uniquely determined from the den-
sity profile, assuming spherical symmetry and isotropic velocity
distribution (Kazantzidis, Magorrian & Moore 2004).

We generate mocks for a grid of parameters, and find that
log10 Mmin = 12.92, σ log M = 0.31, log10 M0 = 14.07, and β =
1.60, fit the projected correlation function well. We also tried a
concentration parameter relation by Bullock et al. (2001) with no
additional scatter, but this made little difference.

In Fig. 6, we plot the projected correlation functions for the
mock and the data. The solid lines are the mean of 3600 realizations
generated in the periodic box. The log-normal HOD without satel-
lite galaxies fits the WiggleZ data well, while a small contribution
from satellites may improve the fit for r � 0.7h−1 Mpc. The BOSS
CMASS clustering galaxies clearly requires satellite galaxies for
r � 2h−1 Mpc.

4.3 Box remapping

We analyse the galaxy sample in three redshift bins, but the length
along the line of sight is still larger than the box size. We rotate
the simulation box to fit the volume with minimum overlap, using
the box remapping technique (Carlson & White 2010) as a guide.
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Table 3. Two box configurations that we use to remap the cubic simulation box to cuboids, which are characterized by three integer vectors, ui (Carlson
& White 2010). Li are the lengths of three sides of the cuboid after remapping.

Name u1 u2 u3 L1 L2 L3

(h−1 Mpc) (h−1 Mpc) (h−1 Mpc)
√

2 (1, 1, 0) (1, 0, 1) (1, 0, 0) 848.5 734.8 346.4√
3 (1, 1, 1) (1, 0, 0) (0, 1, 0) 1039.2 489.9 424.3

Their publicly available code7 provides a list of possible remap-
pings from a periodic cube to cuboids. We use two configurations,
which we call

√
2 and

√
3, depending on the size of the volume

(Table 3). The lengths of the remapped cuboid along the line of sight
are, L1 = √

2L = 849 h−1 Mpc, and L1 = √
3L = 1039 h−1 Mpc,

respectively, where L = 600h−1 Mpc is the length of our simulation
box on a side. In the table, we list the size of the cuboid after remap-
ping, and the integer vectors ui , which characterize the remapping.
The integer vectors specify the orthonormal basis of the remapped
coordinate, ei , as follows:

e1 = u1/|u1|
e2 = u′

2/|u′
2|, u′

2 ≡ u2 − (u1 · u2/|u1|2)u1,

e3 = e1 × e2. (30)

The basis vector e1 points the line of sight, e2 points the declination,
and e3 points the Right Ascension directions, respectively, at the
centres of the six survey regions. We use the cuboid

√
3 for �zNear,

which has enough length along the line of sight to fit the redshift
range 0.2–0.6, and use

√
2 for �zMid and �zFar when we need a

wider cuboid in transverse directions. A small fraction of the survey
volume was larger than the remapped cuboid, and the same volume
in the simulation box was used twice. The fraction of such volume is
1.7 per cent of the total volume. In Table B1, we list the remapping
we use and the fraction of overlap for each region.

4.4 Mock catalogue

The overall procedure for creating a mock catalogue from a halo
catalogue is as follows.

(i) We fill the space with periodic replications of the simula-
tion box, and rotate the positions and velocities to the remapped
coordinate using the orthonormal basis (equation 30);

(ii) apply the redshift space distortion to the halo position:

s = x + v · x̂
aH

x̂, (31)

where H is the Hubble parameter at scale factor a, and x̂ = x/|x|
is the unit vector parallel to x;

(iii) populate the haloes with mock galaxies using the HOD
(which may depend on the redshift-space position at low redshift to
match the high number density);

(iv) subsample the mock galaxies to match the selection function
(mask) of the survey. The subsample fraction is calculated to match
the observed number of galaxies as a mean. The numbers of mock
galaxies fluctuate around the observed number.

For the BOSS mock, we first generate the HOD galaxies and
then apply the redshift-space distortions including the satellite virial
velocities. We can interchange the step (ii) and (iii) because we use

7 http://mwhite.berkeley.edu/BoxRemap/

a position-independent HOD parameters for the BOSS galaxies. In
Fig. 7, we plot slices of our WiZ-COLA mock catalogues for the
15 h region.

5 AC C U R AC Y O F H O D G A L A X I E S

We test the accuracy of our mocks by comparing the HOD galax-
ies generated from COLA with the HOD galaxies generated from
GADGET N-body simulations. We generate HOD galaxies in the pe-
riodic simulation box and compute the power spectra. We use the
HOD parameters described in the previous section for the COLA
HOD galaxies, but we determine different HOD parameters for the
GADGET haloes to match the COLA power spectra in real space,
because HOD parameters are free-fitting parameters that are usu-
ally adjusted for the observed galaxies (Table 2). If we used the
same HOD parameters and the halo mass relation (equation 21),
we would get about 5 per cent higher galaxy power spectrum from
GADGET haloes as we see in Section 3.

In Fig. 8, we plot the power spectra in real and redshift space. We
compute the monopole ( = 0) and the quadrupole ( = 2) moments
for the redshift-space power spectrum Ps,

P s
 (k) = 2 + 1

2

∫ 1

−1
P(μ)P s(k, μ)dμ, (32)

where P is the Legendre polynomial, and μ = k̂ · e3 is the consine
of the angle between the wave vector and the fixed direction of the
redshift-space distortion, e3, which is set to the direction of the third
axis. The procedure of computing the power spectra is the same as
that in Section 3.1; the only difference is that we also subtract the
shot noise (Jing 2005).

In the lower panels, we plot the ratio of the power spectra. Al-
though the HOD galaxies are based on simulations with the same
initial condition, the ratio of the power spectra is affected by the
randomness in populating the haloes with galaxies. The error bars
are 2σ of the mean (equation 22) based on 14 realizations. The real-
space power and the redshift-space monopole are very accurate;
the ratios are consistent with unity for k ≤ 0.2 h Mpc−1 within the
statistical fluctuation, and the statistical error is about 1 per cent.

Since we do not have enough statistics for the quadrupole moment
for precise comparison, we also compute the cross-power spectra,
Pgu, and auto-power spectra, Puu, between the galaxy density and the
line-of-sight peculiar velocity u ≡ v3/(aH), to show the accuracy
of the peculiar velocities. The unit is converted to h−1 Mpc, which
corresponds to the displacement in redshift-space (equation 31).
We use the nearest particle method to compute the velocity power
spectrum; for each point of a regular grid, we assign the velocity of
the nearest mock galaxy to the grid point (Zheng et al. 2013; Koda
et al. 2014). This method gives a volume-weighted sample of the
velocity field.

The redshift-space distortion is an effect of peculiar velocity,
and the power spectrum in redshift space, Ps, is approximately
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Figure 7. One realization of the mock galaxy catalogues for the 15 h region. The depth of the slices is 50 h−1 Mpc. The coordinates are those of the remapped
system, xi = x · ei , whose origin x = 0 is the observer.

Figure 8. HOD galaxy power spectra generated from COLA versus GADGET in real and redshift space. COLA HOD galaxies show good agreement with the
GADGET HOD galaxies. The horizontal lines in the power spectra ratios are the results of minimum χ2 fitting, based on the diagonal errors in the ratio from 14
realizations. The uncertainties in the fitting are 95-per cent intervals.

related to the galaxy density and velocity power spectra in real
space (Appendix B),

P s(k, μ) ≈ Pgg(k) + 2kμImPgu(k, μ) + (kμ)2Puu(k, μ). (33)

In Fig. 9, we plot the angle-averaged cross- and auto-power spectra,∫ 1
0 Pgu(k, μ)dμ and

∫ 1
0 Puu(k, μ)dμ. The cross-power spectra are

also accurate with about 1 per cent scatter, but the velocity–velocity
power spectra for haloes (BOSS central galaxies and WiggleZ galax-
ies) have about 3 per cent error for k ∼ 0.1 h Mpc−1, and 5 per cent
error for k ≥ 0.2 h Mpc−1. The BOSS satellite galaxies add addi-
tional error due to different virial velocities caused by different HOD
parameters; this discrepancy of about 10 per cent shows that the ve-
locity power spectrum is sensitive to HOD parameters, in general,

through the non-linear random velocities, and is not necessarily a
failure of the COLA mocks.

A good agreement in the real-space power spectrum is not diffi-
cult to achieve by tuning the HOD parameters or non-linear biasing
models for haloes, but such tuning does not usually work simulta-
neously in redshift space. Faster mock generation techniques that
uses 2LPT usually have about 5 per cent error in the monopole
and 10 per cent error in the quadrupole of the redshift-space power
spectrum (Chuang et al. 2015b). The primary advantage of COLA
over 2LPT-based methods is the accuracy in the non-linear peculiar
velocity, which may be important for the error evaluation of BAO
reconstruction, and measurement of the growth rate. The accurate
peculiar velocity is limited to that for haloes, and we do not ex-
pect accurate densities or virial velocities inside haloes. We find
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Figure 9. The cross- and auto-power spectra of HOD galaxy density and
line-of-sight peculiar velocity. BOSS Puu is shifted by a factor of 2 to avoid
overlap. COLA has accurate peculiar velocities. We do not find systematic
error in the velocity-galaxy cross-power for k ≤ 0.2 h Mpc−1 and in the
velocity auto-power for k ≤ 0.15 h Mpc−1; there are errors of about 3–
5 per cent in the range 0.15 h Mpc−1 ≤ k ≤ 0.5 h Mpc−1.

discrepancies of 10 per cent at k = 0.1 h Mpc−1, and 20 per cent
at k = 0.2 h Mpc−1, respectively, in redshift-space power spectra
for N-body particles between COLA and GADGET, which seem to be
consequences of inaccurate virial velocities inside the haloes.

Ideally we would like to compare the accuracy of the covariance
matrix, since the main purpose of generating multiple realizations
of mock catalogues is to compute covariance, but we do not have
enough GADGET N-body simulations for covariance matrices. We do
not have enough realisations to compare the two-point correlation
function precisely, either. We leave these comparisons for future
studies. We also note that we have tested the accuracy of COLA
simulations against GADGET simulations with the same box size and
mass resolution.

6 C O N C L U S I O N

(i) We have presented the WiZ-COLA simulation, which consists
of 3600 simulations with 12963 particles that covers the volume of
(600 h−1 Mpc)3, and resolve haloes of mass 1012 h−1Mpc, using our
new parallelized COLA code. The simulation took only 200 k core
hours in total.

(ii) We generate 600 realizations of mock galaxy catalogues for
the WiggleZ survey, and the BOSS CMASS galaxies in the overlap
regions using HODs. We show that COLA can create mock HOD
galaxies as accurate as GADGET N-body simulations for large-scale
power spectra for wavelength k ≤ 0.2 h Mpc−1, both in real- and
redshift-space.

(iii) The accuracy in peculiar velocity is the primary advantage
of COLA simulations. We show that velocity power spectra are
accurate within a per cent for k ≤ 0.15 hMpc and 3 per cent for
0.2 h Mpc, and we expect a similar accuracy for the quadrupole
moment of the galaxy power spectra in redshift space. The accuracy

of the galaxy-velocity cross-power spectra and monopole moment
of galaxy power spectra is better than 1 per cent.
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Bernardeau F., Colombi S., Gaztañaga E., Scoccimarro R., 2002, Phys. Rep.,

367, 1
Beutler F. et al., 2012, MNRAS, 423, 3430
Beutler F., Blake C., Koda J., Marı́n F. A., Seo H.-J., Cuesta A. J., Schneider

D. P., 2016, MNRAS, 455, 3230
Blake C., Collister A., Lahav O., 2008, MNRAS, 385, 1257
Blake C. et al., 2010, MNRAS, 406, 803
Blake C. et al., 2011, MNRAS, 418, 1707
Bouchet F. R., Colombi S., Hivon E., Juszkiewicz R., 1995, A&A, 296, 575
Bullock J. S., Kolatt T. S., Sigad Y., Somerville R. S., Kravtsov A. V., Klypin

A. A., Primack J. R., Dekel A., 2001, MNRAS, 321, 559
Burrage C., Parkinson D., Seery D., 2015, preprint (arXiv:1502.03710)
Cai Y.-C., Bernstein G., Sheth R. K., 2011, MNRAS, 412, 995
Carlson J., White M., 2010, ApJS, 190, 311
Chuang C.-H., Kitaura F.-S., Prada F., Zhao C., Yepes G., 2015a, MNRAS,

446, 2621
Chuang C.-H. et al., 2015b, MNRAS, 452, 686
Cole S. et al., 2005, MNRAS, 362, 505
Coles P., Jones B., 1991, MNRAS, 248, 1
Crocce M., Scoccimarro R., Bernardeau F., 2012, MNRAS, 427, 2537
Davis M., Efstathiou G., Frenk C. S., White S. D. M., 1985, ApJ, 292, 371
de la Torre S., Peacock J. A., 2013, MNRAS, 435, 743
Drinkwater M. J. et al., 2010, MNRAS, 401, 1429
Driver S. P. et al., 2011, MNRAS, 413, 971
Eisenstein D. J., Hu W., 1998, ApJ, 496, 605
Eisenstein D. J. et al., 2005, ApJ, 633, 560
Eisenstein D. J., Seo H.-J., Sirko E., Spergel D. N., 2007, ApJ, 664, 675
Frigo M., Johnson S. G., 2005, Proc. IEEE, 93, 216
Garilli B. et al., 2014, A&A, 562, A23
Gurbatov S. N., Saichev A. I., Shandarin S. F., 1989, MNRAS, 236, 385
Hartlap J., Simon P., Schneider P., 2007, A&A, 464, 399
Hill G. J., Gebhardt K., Komatsu E., MacQueen P. J., 2004, in Allen R. E.,

Nanopoulos D. V., Pope C. N., eds, AIP Conf. Ser. Vol. 743, The New

MNRAS 459, 2118–2129 (2016)

 at Sw
inburne U

niversity of T
echnology on July 6, 2016

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://arxiv.org/abs/1502.03710
http://mnras.oxfordjournals.org/


2128 J. Koda et al.

Cosmology: Conference on Strings and Cosmology. Am. Inst. Phys.,
New York, p. 224

Howlett C., Manera M., Percival W. J., 2015a, Astron. Comput., 12, 109
Howlett C., Ross A. J., Samushia L., Percival W. J., Manera M., 2015b,

MNRAS, 449, 848
Jing Y. P., 2005, ApJ, 620, 559
Kazantzidis S., Magorrian J., Moore B., 2004, ApJ, 601, 37
Kazin E. A. et al., 2014, MNRAS, 441, 3524
Kitaura F.-S., Yepes G., Prada F., 2014, MNRAS, 439, L21
Koda J. et al., 2014, MNRAS, 445, 4267
Komatsu E. et al., 2009, ApJS, 180, 330
Leclercq F., 2015, preprint (arXiv:1512.04985)
Leclercq F., Jasche J., Wandelt B., 2015, A&A, 576, L17
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APPENDIX A : IMPAC T O F INITIAL
C O N D I T I O N

We show the impact of our initial condition, which is given at
a = 0.5/nstep for the velocity (equation 16), compared to the original
one at a = 0.1 for both the position and velocity,

xres(t1) = 0, vres(t1) = 0. (A1)

This original initial condition gives slightly better results, although
our initial condition is not problematic in theory. The ansatz for
COLA with nLPT = −2.5 is tuned for the original initial condition
at a = 0.1, and the same ansatz is probably not optimal for our
initial velocity at a = 0.05.

In Fig. A1, we plot the ratio of the matter power spectra to that of
the GADGET N-body simulations at z = 0.6 for different number of
steps with the original initial condition. We divide the time equally
in scale factor between 0 and 1, a(ti) = i/nstep, for nstep = 10, 20, 50,
and 100. The original initial condition gives better accuracy around
k = 0.1 h Mpc−1, without the 2–3 per cent excess in Fig. 4; the
agreement is better than 1 per cent for k ≤ 0.3 h Mpc−1. The range
with accurate matter power expands as we increase the number of
steps.

Figure A1. The matter power spectrum with the original initial condition,
which gives slightly more accurate power spectrum than Fig. 4.

Figure A2. The precision of COLA halo bias (Upper panel) and halo mass
(Lower panel) for various time steps. The original initial condition gives
slightly better biases than Fig. 2. The accuracy become about 1 per cent for
100 steps, while the halo masses do not show monotonic convergence.

In Fig. A2, we plot the accuracy in the halo bias and mass. The
original initial condition gives a slight improvement for the halo
bias as well – from 5-per cent error in Fig. 2 to about 3 per cent
for 10 time steps. We split the haloes to groups with an equal
number density of 10−4(h−1 Mpc)−3 by their mass and compute the
halo bias, as we did for Fig. 2. The halo bias improves to about
1 per cent for 100 steps. The lower panel shows the mean halo
mass in each group. Our COLA simulations does not converge to
the GADGET simulation because we have the uniform PM grid for
force computation, and that causes an additional error in the halo
formation independent of time steps. The PM force recovers the
correct force at a distance of about 2.7 times the PM grid size,
which corresponds to a virial radius of a halo of mass M200,m = 5
× 1012 h−1 M� for our configuration; the limited force resolution
below this scale explains the deviation from the correct halo mass.

In this appendix, we have shown that our excess in our matter
power spectrum was caused by our initial setup for the velocity, and
the accuracy of COLA simulations could improve slightly by using
the original initial condition.
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A P P E N D I X B : T H E R E L AT I O N B E T W E E N T H E
REDSHIFT-SPACE POWER SPECTRU M AND
VELOCITY POWER SPECTRU M

We derive equation (33), which shows the relation of the power
spectrum in redshift space, Ps, and the auto- and cross- power
spectra of density and the line-of-sight velocity u ≡ v3/(aH). The
mass conservation between density contrast in redshift space, δs(s),
and that in real space, δ(x),

[1 + δs(s)]d3s = [1 + δ(x)]d3x, (B1)

for the mapping between the real-space coordinate x and
the redshift-space coordinate, s = x + u(x)e3 (where e3 is
the unit vector along the third axis), gives a formula
for the density contrast in Fourier space (e.g. Scoccimarro
2004)

δD(k) + δs
g(k) =

∫
d3x e−ik·xe−ikμu(x)[1 + δ(x)], (B2)

where δD is the Dirac delta function and kμ = k3. The relation up
to the first order in kμu is,

δs(k) ≈ δ(k) − ikμu(k). (B3)

Equation (33) can be derived by taking the variance 〈δs(k)δs(k)∗〉,
P s ≈ Pδδ(k) + 2kμImPδu + (kμ)2Puu. (B4)

This is equivalent to a well-known formula by Scoccimarro (2004),

P s ≈ Pδδ + 2f μ2Pδθ + f 2μ4Pθθ , (B5)

where θ (x) = ∇ · v(x)/(af H ) is the velocity divergence and f ≡
dln D1/d ln a is the growth rate. It can be shown by inverting the
divergence in Fourier space,

v(k) = af H
ik
k2

θ (k), (B6)

or u(k) = if μθ (k)/k, assuming the vorticity is negligible, ∇ ×
v(x) = 0.

Table B1. We list the number of galaxies, NWiggleZ, the mean numbers of mock galaxies and their standard error in the mean for 3600 realisations,
N̄WiggleZ, and the survey volume in units of 107(h−1 Mpc)3, for the six regions in the sky decomposed to three redshift bins. The cuboid is one of
the box remappings listed in Table 3. The ‘overlap’ is the fraction of the survey volume that overlaps in the periodic simulation box in per cent – the
overlapped volume consists of two copies of the same simulation volume. Since �Mid completely overlaps with the other two redshift bins, the total,
in the final row, is the sum for Near and Far redshift bins.

Reg �z NWiggleZ N̄WiZ−COLA Volume (107) Cuboid Overlap

1 hr Near 6927 6927.63 ± 3.3 2.81
√

3 0
1 hr Mid 9437 9436.5 ± 3.4 4.98

√
3 0

1 hr Far 7880 7882.2 ± 3.1 7.12
√

3 0
3 hr Near 8000 8000.3 ± 3.6 2.89

√
3 0

3 hr Mid 10 241 10 240.7 ± 3.6 5.12
√

3 0
3 hr Far 8756 8760.0 ± 3.1 7.33

√
3 0

9 hr Near 15 128 15 131.0 ± 5.0 4.82
√

3 0
9 hr Mid 18 978 18 984.0 ± 5.1 8.53

√
3 0

9 hr Far 11 424 11 418.6 ± 3.4 12.20
√

2 0.58
11 hr Near 18 019 18 020.1 ± 5.1 6.25

√
3 0

11 hr Mid 22 289 22 299.2 ± 4.8 11.07
√

2 5.08
11 hr Far 13 919 13 894.9 ± 3.3 15.84

√
2 1.73

15 hr Near 22 309 22 312.3 ± 6.1 7.12
√

3 0
15 hr Mid 30 015 30 024.6 ± 6.1 12.62

√
2 4.88

15 hr Far 19 471 19 428.3 ± 4.4 18.05
√

2 5.66
22 hr Near 15 884 15 883.6 ± 6.5 3.55

√
3 0

22 hr Mid 16 146 16 142.7 ± 5.4 6.29
√

3 0
22 hr Far 11 024 11 025.9 ± 3.8 9.00

√
3 0

Total 158 741 97.00 1.7

This paper has been typeset from a TEX/LATEX file prepared by the author.
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